Search results for "Endogenous regeneration"

showing 2 items of 2 documents

Cellular and molecular basis of the imbalance between vascular damage and repair in ageing and age-related diseases: As biomarkers and targets for ne…

2016

Preclinical and clinical studies suggest that specific subsets of cells isolated from the peripheral blood, play an essential role in the imbalance of damage and repair during age-associated diseases, such as metabolic syndrome, diabetes, atherosclerosis, neurodegenerative diseases, osteoporosis and cancer. Endogenous regeneration of the vessel wall involves cells of the vascular wall, inflammatory cells, circulating precursors, and mature endothelial cells, which are capable to restore the endothelium in a concerted interaction. Early detection of such imbalances with specific biomarkers may reduce age-associated diseases and subsequent cardiovascular events. Likewise, new strategies have …

0301 basic medicineAgingEndotheliumCellStimulationBiologyVascular disease03 medical and health sciencesDiabetes mellitusStem and progenitor cellsNeoplasmsmedicineBiomarkers TumorDiabetes MellitusStem and progenitor cells Biomarkers Ageing Vascular diseaseAnimalsHumansMetabolic SyndromeTumorVascular diseaseEndogenous regenerationCancerNeurodegenerative Diseasesmedicine.diseaseAtherosclerosisAgeing; Biomarkers; Stem and progenitor cells; Vascular disease; Animals; Biomarkers Tumor; Humans; Aging; Atherosclerosis; Diabetes Mellitus; Metabolic Syndrome; Neoplasms; Neurodegenerative Diseases; OsteoporosisAgeing030104 developmental biologymedicine.anatomical_structureAgeingImmunologyCancer researchOsteoporosisBiomarkersDevelopmental Biology
researchProduct

Taking Advantage of Nature’s Gift: Can Endogenous Neural Stem Cells Improve Myelin Regeneration?

2016

Irreversible functional deficits in multiple sclerosis (MS) are directly correlated to axonal damage and loss. Neurodegeneration results from immune-mediated destruction of myelin sheaths and subsequent axonal demyelination. Importantly, oligodendrocytes, the myelinating glial cells of the central nervous system, can be replaced to some extent to generate new myelin sheaths. This endogenous regeneration capacity has so far mainly been attributed to the activation and recruitment of resident oligodendroglial precursor cells. As this self-repair process is limited and increasingly fails while MS progresses, much interest has evolved regarding the development of remyelination-promoting strateg…

0301 basic medicineCell typeMultiple Sclerosisgliaadult neural stem cellsoligodendrocytesReviewBiologyRegenerative MedicineCatalysisInorganic ChemistryWhite matterlcsh:Chemistry03 medical and health sciencesMyelin0302 clinical medicineNeural Stem CellsmedicineAnimalsHumansPhysical and Theoretical ChemistryRemyelinationMolecular Biologylcsh:QH301-705.5SpectroscopyMyelin SheathMultiple sclerosisRegeneration (biology)Organic ChemistryEndogenous regenerationGeneral Medicinedifferentiationmedicine.diseaseNeural stem cellComputer Science ApplicationsNerve Regeneration030104 developmental biologymedicine.anatomical_structureremyelinationlcsh:Biology (General)lcsh:QD1-999nervous systemprecursor cellsImmunologyNeurosciencecell fate determinationwhite matter030217 neurology & neurosurgeryInternational Journal of Molecular Sciences
researchProduct